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Knowledge-Based Treatment Planning in Radiation Therapy

Radiation therapy (RT) is used to treat over 50% of all cancer cases. The work-flow is:

1. A dosimetrist generates plans by solving an optimization problem using patient CT images.

2. An oncologist reviews the plan and suggests changes to the dosimetrist.

This process repeats until the oncologist approves the plan, which can take several days.

Knowledge-based planning (KBP) automates plan generation by predicting a dose distribution
using historical cases and then correcting it to a “deliverable” plan via optimization.
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Our Contributions

We train a generative adversarial network (GAN) to color CT images. Specifically, we:

1. Develop the first GAN-based KBP prediction model and show that it outperforms state-of-
the-art benchmarks (e.g., ML techniques, deep neural networks) in several clinical metrics.

2. Demonstrate on a oropharyngeal cancer data set that our GAN-based KBP can successfully
generate plans that often meet prescription criteria more than clinical treatment plans.

Generative Adversarial Networks (GANs)

A generator G (·) takes z ∼ pz and outputs a sample x = G (z). A discriminator D(·) takes a
real and generated sample x and predicts which is real (D(x) = 1) and which is fake (D(x) = 0).

Style Transfer GANs map an image in style z to a different style x, e.g., grayscale to color. They
are trained by minimizing reconstruction loss that penalizes the distance from ground truth.

min
G

max
D

{
Ex∼pdata [logD(x)] + Ez∼pz [log(1− D(G (z)))]︸ ︷︷ ︸

GAN loss

+λEx∼pdata,z∼pz [‖x− G (z)‖1]︸ ︷︷ ︸
reconstruction loss

}
.
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Dataset

CT scans and historical treatment plans for 217 patients with oropharyngeal cancer. Plans were
prescribed 70 Gy, 63 Gy, and 56 Gy to high, intermediate, and low risk targets, respectively.
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Method for Generating Treatment Plans

Preprocessing: 3D patient volumes were divided into voxels (4mm × 4mm × 2mm); each voxel
was labeled as organ-at-risk (OAR), planning target volume (PTV), or unclassified.

Predictions: 3D CT images were split into 2D slices (128 × 128px). We used 130 plans (15,675
images) to train the GAN and benchmark models. We predicted plans for 87 out-of-sample patients.

IO Pipeline: An optimization model converted predicted dose distributions into “deliverable” plans.

Benchmark KBP Approaches

Bagging Query (BQ): A look-up table identifies deliverable plans of patients with similar geome-
tries and uses low-dimensional summaries of their 3D dose distributions to the targets and OARs.

Generalized PCA (gPCA): Combination of PCA and linear regression using patient geometry
features to predict low-dimensional dose distribution summaries for targets and OARs.

Random Forest (RF): Predicts dose to each voxel using custom patient geometry-based features.

U-net Convolutional Neural Network (CNN): Predicts dose to each voxel in 2D slices from
CT images using a U-net convolutional neural network architecture.
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Results and Clinical Criteria

All methods were evaluated on the percentage of the final plans that satisfied 10
clinical criteria (seven for OARs and three for PTV).

OAR Sparing Criteria: One criteria per OAR restricts either the mean or the
max dose to the region to be below a certain threshold value, e.g., max dose to any
voxel in the brainstem should be less than 54 Gy.

Target Coverage Criteria: One criteria per target ensures it receives the pre-
scribed dose, e.g., 99% of all voxels in the PTV70 should receive 70 Gy.

BQ gPCA RF CNN GAN Clinical

OAR Criteria 61.6% 65.8% 71.5% 72.5% 72.8% 72.0%
PTV Criteria 83.5% 85.7% 68.0% 76.3% 81.3% 76.8%
All Criteria 67.6% 71.2% 70.7% 73.6% 75.2% 73.3%

The GAN plans were best at sparing OARs, delivered the requisite amount of radi-
ation to the target, and were most likely to satisfy all clinical criteria.
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(a) CNN − clinical

Brainstem

Spinal Cord

Right Parotid

Left Parotid

Larynx

Esophagus

Mandible

PTV56

PTV63

PTV70

Clinical Criteria Difference (Gy)

-10 -5 0 5 10

GAN plan better

(b) GAN − clinical
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(c) GAN − CNN

Head-to-head comparisons of plans. The x-axis represents difference in dose (measured in Gy), normalized
for criteria condition. Box boundaries represent 75th and 25th percentiles.

Conclusions

We demonstrate that our GAN-based KBP work-flow:

1. Predicts 3D dose distributions without cancer-site specific feature engineering.

2. Outperforms all benchmark approaches for one of the hardest cancer treatments
to plan; we expect these results will hold for simpler more common cancers.

Email: rmahmood@mie.utoronto.ca Applied Optimization Laboratory (http://chan.mie.utoronto.ca)


