Speaker: Adam Diamand, York University
Time: Thursday, February 13, 2020, 12:10pm-1:00pm
Venue: Bahen Centre, Room 1190, 40 St. George Street
Abstract: We investigate the scheduling practices of multistage outpatient health programs that offer care plans customized to the needs of their patients. We formulate the scheduling problem as a Markov decision process (MDP) where patients can reschedule their appointment, may fail to show up, and may even become ineligible. The MDP has an exponentially large state space and thus, we introduce a linear approximation to the value function. We then formulate an approximate dynamic program (ADP) and implement a dual variable aggregation procedure. This reduces the size of the ADP while still producing dual cost estimates that can be used to identify favorable scheduling actions. We use our scheduling model to study the effectiveness of customized-care plans for a heterogeneous patient population and find that system performance is better than clinics that do not offer such plans. We also demonstrate that our scheduling approach improves clinic profitability, increases throughput, and decreases practitioner idleness as compared to a policy that mimics human schedulers and a policy derived from a deep neural network. Finally, we show our approach is robust to errors introduced when practitioners assign patients to the wrong care plan.
Announcement at: MIE Events